ANTECEDENTES FRACTALES PARA MERCADOS FINANCIEROS

Luis Guillermo Villaseñor Báez, Jorge Víctor Alcaraz Vera

Resumen


El presente artículo trata de mostrar de manera muy breve los antecedentes y fundamentos matemáticos que existen sobre los mercados financieros en aquellos autores que buscan una mejor explicación que la hipótesis de mercados eficientes, una explicación puede ser la fractal, que claro está no es la única.

Texto completo:

PDF

Referencias


Black, F. and M. Scholes (1973) The pricing of Options and corporateliabilities, Journal of Political Economy, 81, pp. 637-659.

Cont. R (1994), Long dependence in financial markets, Centre de

Mathématiques appliquées, Ecole Polytechnique France / Finances

Publiques, 49(2), pp. 282-286.

Dai W. and C. Hayde (1996) It^o Formula with respect to fraccional Brownian motion and its application, J. Appl. Math. Stoch, Anal 9, pp. 439-448.

Dasgupta A. (1997) Fractional Brownian Motion: Its properties and applications to stochastic integration. Ph. D. Thesis, Dept. of

Statistic, University of Carolina at Chapel Hill.

Desagupta, A. and G. Kallianpur (2000) Arbitrage opportunities for class of Gladyshev process, Appl. Math. Optim, 41, 377-385.

Duncan, T. E., Y., Hu and B., Pasik-Duncan (2002) Stochastic Calculus for Fractional Brownian Motion, SIAM J. Control Optim., 38, pp. 582-612.

Fleming, Ostdiek y Whaley, “ Predicting Stock Market Volatility: a new measure”, The Journal of Futures Markets Vol (15) 3, 265-302, 1965

Hu, Y. and B. Oksendal (2000) Fractional White Noise Calculus and Applications to Finance, Preprint University of Oslo.

Hull, J 2003, Options Futures and Other Derivatives, Fifth Edition,

Prentice Hall.

Hull, J. and A. White(1987)The Pricing of Options on Assets on Stochastic Volatilities, The Journal of Finance, 42(2), pp.281-300.

Hurst, H. (1951) The long-term storage capacity of reservoirs Transactions of American Society Civil Engineer, pp. 116 - 195.

Indicadores del Mercado en el Boletín de Opciones

Kravych, Y. (2002)Stock Price Modelling by Long-Memory Process, Overview of the Fractional Brownian Motion Approach,

University of New Wales Sydney Australia.

Lin, S. (1995) Stochastic analysis of fractional Brownian motion and applications SIAM review 10, pp. 422 - 437.

Mandelbrot, B. (1982) The Fractal Geometry of Nature, NY W.H.

Freeman Mandelbrot, B. and V. Ness (1968) Fractional Brownian Motions, Fractional Noises and Applications, SIAM review 10, 11(3).

McCulloch J. (1985) The value of European Options with Log-Stable Uncertainty, Working paper.

McCulloch J. (1978) The pricing of Short Lived Options when Price

Uncertainty is Log-symmetric stable, Working paper.

Necula C. (2002) Modelling and detecting Long Memory in Stock returns, Academy of Economic Studies, Dissertation Paper.

Necula C. (2002) Option Pricing in a Fractional Brownian Motion

Environment, Academy of Economic Studies, Bucharest

Romania.

Norros, I., E. Valkeila. , and J. Virtamo (1999) An Elementary approach to a Girsanov Formula and Other Analytical Results on Fractional Brownian Motions, it Bernoulli 5 (4).

Oksendal B. (2004) Fractional Brownian Motion in Finance Preprint

University of Oslo.

Palomas E. (2002) Evidencia e Implicaciones del fenómeno Hurst en el mercado de capitales, Gaceta de economía, Año 8, Núm. 15.

Peters, E. (1991), Chaos and Order in Capital Markets, New York: John Wiley and Sons.

Peters, E., Fractal Market Analysis (Applying Chaos Theory to Investment an Economic) New York: John Wiley and Sons.

Rosek S. and R. (2006) Schobel Risk Preference Based Option Pricing in Fraccional Brownian Market, Preprint Faculty of Economics and Business Administration, University of Tbingen, Germany.

Shiryaev A. (1998) On arbitrage and replication for fractal model, Shiryaev and Sulem editors, Workshop on mathematical finance, INRIA, Paris.

Sánchez, C. (2001), Valor en Riesgo y otras aproximaciones, Valuación, Análisis y Riesgo.

Vasconcelos G. (2004) A guide walks down wall street: an introduction to econophysics, Universidad Federal Pernambuc Brasil.

Vasicek, O. (1977) An equilibrium characterization of term structure, Journal of Financial Economics, 5, pp. 177-188.

Venegas, F. (2006) Riesgos Financieros y Económicos, Thompson.

Wilmott, P. (2005) Quantitative Finance, Wiley.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2017 Revista de Investigación en Ciencias y Administración

Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Económicas y Empresariales. Av. Francisco J. Mujica, Ciudad Universitaria, Morelia, Michoacán, México, C.P. 58030. Todos los derechos reservados 2016. Esta revista puede ser reproducida con fines no lucrativos, siempre y cuando se cite la fuente completa y su dirección electrónica. De otra forma requiere permiso previo por escrito de la institución y autor.